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triple-drug therapy does not seem to select
significant escape mutation, unlike single- or
double-drug therapy; part of the protection
must be due to the drug-induced low level of
virus replication. This gives some hope that
if the immune response is activated very
early in infection, there is a chance that the
virus could be controlled by a response to at
least three epitopes before high-level virus
replication occurs. Given the above argu-
ments about pre-existing virus variability,
this could mean inducing CTL responses to
ten or more epitopes.

Breadth of the immune response

A remarkable feature of the natural T-cell
response to acute or chronic virus infection is
that the CD8* T-cell response can be focused
on a very small number of epitopes”7%. In the
CD#8* T-cell response to acute EBV infection,
as many as 40% of blood CD8" T cells can
respond to a single epitope"?, despite the fact
that this herpes virus expresses hundreds of
proteins. This type of CTL response could be
disastrous for a vaccine, as it offers an easy
escape route. [t is not clear how to broaden a
vaccine response, and the obvious possibility
of adding more virus proteins to the vaccine
might not work (as for EBV). It might be bet-
ter to mix several small vaccine constructs
together, fooling the immune system into
responding to several ‘invaders; each requiring
a strong T-cell response. For a DNA prime and
recombinant virus boost schedule, it might
only be necessary to do this for the DNA
priming component.

Duration of the Immune response

In macaques that were immunized with non-
replicating MVA, the half life of tetramer-
stained CD8"* T cells seems to be around
seven days®. The memory T-cell response
that remains is at a much lower level, This is
probably typical of the response to a non-per-
sisting antigen. If a high level of mature effec-
tors is required for protection, continuous or
repeated antigenic stimulation will be
required. The evidence from the Nairobi sex
workers indicates that this will be needed, at
least for complete protection; in several cases,
susceptibility to HIV infection was restored
when they ceased prostitution'®, However,
their concentration of antigen-specific CD8*
T cells while they were protected was less than
that which can be induced in humans by a
vaccine, so the situation might not be exactly
comparable. Amara et al.% found that their
macaques were protected against SHIV-89.6P
disease when challenged seven months after
the last immunization. By contrast, there was
little or no protection in macaques challenged

at the peak of the tetramer response to a
single epitope®® (T. M. Allen, T. Hanke and
D. Watkins, unpublished observations).

The SHIV-89.6P-challenge studies indicate
that useful but incomplete protection can be
obtained by long-lasting memory T cells; com-
plete protection might need higher levels of
fully activated effectors. Only phase I1] efficacy
trials will show whether CTL memory that
is induced by current vaccines will work. If
non-persisting vaccines do not protect, persist-
ing antigen vaccines will have to be tested. The
regulatory authorities will have to confront

this need.

Why the idea might be right but fail
The animal studies that have been discussed
show that the CTL-vaccine approach can
work. However, for HIV, conditions will have
to be exactly right. There is a danger that one
or two negative trials could kill the whole idea
of a CTL vaccine. Therefore, it is vital that
conditions for the first efficacy trials are opti-
mal. The reasons that a vaccine might fail
have been discussed: the vaccine-induced
T cells might have to be in an activated state
that cannot be maintained by the vaccine, the
immune response might be too weak, the
T cells might not see enough epitopes to cope
with virus variability, the virus might escape
from the T-cell response or the duration of
protection might only be brief. Even at best, a
CTL-inducing vaccine might be only half a
vaccine — that is, it might only really protect
in combination with neutralizing antibody.
These concerns combine to produce a for-
midable challenge, but one that cannot be
avoided. There is now a CTL-vaccine band-
wagon, with several teams gearing up to test
the same hypothesis. One bad trial could ruin

Glossary

CLADE
A subgroup of HIV variants with a greater degree of
genome homology.

LICENSING
The activation of dendritic cells by CD4- T cells
through CD40-CD40L interaction,

PRIME~BOOST

When a single application of a vaccine is insufficient,
repeated immunizations are performed using the same
vaccine preparation (homologous prime boost) or
using different vaccine preparations (heterologous
prime boost) to sequentially stimulate a better
immune response.

TETRAMER

A reagent composed of four MHC-peptide complexes
linked by biotin and streptavidin, which can be
fluorescently labelled and used to track antigen-specific
T cells by flow cytometry.

PERSPECTIVES

the whole lot, although a good trial that gives
a clear negative answer would be scientifically
very important. A positive protective effect
would open the door to a vaccine and could
be within our grasp soon.

Trials: ethical and political issues

The need for an HIV vaccine is desperate in

developing countries. Apart from a few excep-

tional sites, only these countries have a high
enough incidence of HIV infection to conduct
phase I1I efficacy trials. Therefore, it is essen-
tial to establish strong collaborations well in
advance of such trials. Matching of clades
between vaccine and the most prevalent virus
has been used as a political argument to
ensure that such collaborations are truly in
the interests of the African or Asian partner,

In fact, there are stronger scientific argu-
ments as to why the clades should be
matched in any phase III efficacy trial. It is
also important to have an outline plan for
further vaccine development to ensure that, if
the vaccine works, it will be made available in

the partner country at the earliest opportu-

nity. The medical, scientific and regulatory
authorities are well aware of these issues, and

trials need at least two years of preparation to

deal with these issues before the trial itself.

The associated infrastructure development

needs similar forward planning.

Thought also has to be given to serious
ethical issues. The trials will only give answers
if some control volunteers become infected
with HIV. If the vaccine only partly protects,
or does not work, vaccine recipients will also
be infected. The level of treatment that they
should be offered — for life — needs very
careful discussion, which must involve the
community to which the trial participant
belongs. For these and more commercial rea-
sons, vaccines that are targeted at developing
countries are not attractive to the pharmaceu-
tical industry. Alternative funding streams
have been created and need continued sup-
port (for further discussion of these issues, see
http://www.iavi.org).

Conclusions

HIV presents an unprecedented challenge to
vaccine design and conduct of trials. Virus
variability is a particularly serious problem.
It must not be assumed that 90% similarity
between HIV clades means that a vaccine that
is based on one clade will give 90% protection
against another clade; it is more likely that such
cross protection would be as little as 33%.
Efforts must be made, therefore, to ensure that
the vaccine stimulates a broad response. This
is difficult to ensure, given the tendency of
the immune response to focus on only a few
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itopes — sometimes only one. These issues
esent formidable challenges, but if these

problems are propetly addressed, the animal
models indicate that the vaccine will work.
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The follewing terms in this article are Bnked online to:
LocusLink: http://www.nebi.nim.nih.gov/LocusLink
CCRS5 | CD4 | CD8 | CXCR4 | IFN-a | FN-y | IL-2 [ IL-12 | MiP-1a

FURTHER INFORMATION
The Interational AIDS Vaccine Initiative: hitp://www.iavi.org
Access 1o this interactive links box is free onfine
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Ethical issues for vaccines and

Immunization

Jeffrey B. Ulmer and Margaret A. Liu

Vaccination is the only type of medical
intervention that has eliminated a disease
successfully. However, both in countries
with high immunization rates and in
countries that are too impoverished to
protect their citizens, many dilemmas and
controversies surround immunization. This
article describes some of the ethical issues
involved, and presents some challenges
and concepts for the global community.

Vaccines stand out as being among the most
efficacious and cost-effective of global med-
ical interventions! (BOX 1). Vaccines have saved
millions of lives, prevented significant mor-
bidity and suffering, and even eradicated a
disease. This last accomplishment, the eradi-
cation of smallpox, highlights what can be
achieved by vaccination. However, unfortu-
nately, the inequalities in the distribution and

use of vaccines are also striking. If vaccines
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